8,000 new antibiotic combinations are surprisingly effective

/, Publications/8,000 new antibiotic combinations are surprisingly effective

8,000 new antibiotic combinations are surprisingly effective

Scientists have traditionally believed that combining more than two drugs to fight harmful bacteria would yield diminishing returns. The prevailing theory is that that the incremental benefits of combining three or more drugs would be too small to matter, or that the interactions among the drugs would cause their benefits to cancel one another out.

Now, a team of UCLA biologists has discovered thousands of four- and five-drug combinations of antibiotics that are more effective at killing harmful bacteria than the prevailing views suggested. Their findings, reported today in the journal npj Systems Biology and Applications, could be a major step toward protecting public health at a time when pathogens and common infections are increasingly becoming resistant to antibiotics.

“There is a tradition of using just one drug, maybe two,” said Pamela Yeh, one of the study’s senior authors and a UCLA assistant professor of ecology and evolutionary biology. “We’re offering an alternative that looks very promising. We shouldn’t limit ourselves to just single drugs or two-drug combinations in our medical toolbox. We expect several of these combinations, or more, will work much better than existing antibiotics.”

Working with eight antibiotics, the researchers analyzed how every possible four- and five-drug combination, including many with varying dosages — a total of 18,278 combinations in all — worked against E. coli. They expected that some of the combinations would be very effective at killing the bacteria, but they were startled by how many potent combinations they discovered.

For every combination they tested, the researchers first predicted how effective they thought it would be in stopping the growth of E. coli. Among the four-drug combinations, there were 1,676 groupings that performed better than they expected. Among the five-drug combinations, 6,443 groupings were more effective than expected.

Read more at University of California – Los Angeles

2018-09-05T07:15:22+00:00Tags: |